ИНТЕРГЕЙМ
Понедельник, 23.10.2017, 18:16
ГлавнаяРегистрацияВход Приветствую Вас Гость | RSS








Главная » Статьи » Мои статьи

Лев Ландау. Теория относительности Альберта Эйнштейна
Эта статья выдающегося советского физика Льва Ландау была опубликована в журнале "Знание - Сила" в 1985 году.

В этом году исполняется 60 лет величайшему физику нашего времени - Альберту Эйнштейну. Эйнштейн знаменит созданной им теорией относительности, которая вызвала настоящую революцию в науке. В наших представлениях об окружающем нас мире принцип относительности, выдвинутый Эйнштейном еще в 1905 г., произвел такой же громадный переворот, какой в свое время произвело учение Коперника.

До Коперника люди думали, что они живут в абсолютно покойном мире, на неподвижной Земле - центре вселенной. Коперник опрокинул этот вековой предрассудок, доказав, что на самом деле Земля - лишь крошечная песчинка в необъятном мире, находящаяся в непрерывном движении. Это было четыреста лет тому назад. А теперь Эйнштейн показал, что такая привычная и, казалось бы, совершенно ясная для нас вещь как время, также обладает совершенно иными свойствами, чем те, которые мы ему обычно приписываем...

Для того чтобы полностью разобраться в этой весьма сложной теории, нужны большие знания в области математики и физики. Однако общее представление о ней может и должен иметь каждый культурный человек. Такое общее представление о принципе относительности Эйнштейна мы и попытаемся дать в нашей статье, которая будет печататься частями в трех номерах "Знание - сила".

В обработке этой статьи для юного читателя приняли участие: Э.Зеликович, И.Нечаев и О.Писаржевский.


Относительность, к которой мы привыкли

Всякое ли утверждение имеет смысл?

Очевидно, нет. Например, если вы произнесете "би-ба-бу", то никто не найдет в этом восклицании никакого смысла. Но даже вполне осмысленные слова, соединенные по всем правилам грамматики, тоже могут дать полнейшую чепуху. Так, фразе "лирический сыр смеется" трудно приписать какой бы то ни было смысл.

Однако не все бессмыслицы так очевидны: очень часто утверждение, на первый взгляд вполне разумное, оказывается все же по существу нелепым. Скажите, например, на какой стороне Пушкинской площади в Москве стоит памятник Пушкину: на правой или на левой?

Ответить на этот вопрос невозможно. Если идти от Красной площади к площади Маяковского, то памятник будет слева, а если идти в обратном направлении, он окажется справа. Ясно, что без указания направления, относительно которого мы считаем "право" и "лево", эти понятия не имеют никакого смысла.

Точно так же нельзя сказать, что сейчас на земном шаре: день или ночь? Ответ зависит от того, где этот вопрос задается. Когда в Москве день, в Чикаго - ночь. Следовательно, утверждение "сейчас день или ночь" не имеет никакого смысла, если не указано, к какому месту земного шара оно относится. Такие понятия будем называть "относительными".

На двух изображенных здесь рисунках показаны пастух и корова. На одном рисунке пастух больше коровы, а на другом корова больше пастуха. Но всякому ясно, что противоречия здесь нет. Рисунки сделаны наблюдателями, находившимися в разных местах: первый стоял ближе к корове, второй - ближе к пастуху. В картинах важны не размеры предметов, а тот угол, под которым мы видели бы эти предметы в действительности.

Ясно, что "угловая величина" предмета относительна: она зависит от расстояния между ними и предметом. Чем ближе предмет, тем его угловая величина больше и тем большим он выглядит, а чем дальше предмет, тем его угловая величина меньше и тем меньшим он кажется.

Абсолютное оказалось относительным

Не всегда, однако, относительность наших понятий так очевидна, как в приведенных примерах.

Мы часто говорим "наверху" и "внизу". Абсолютные ли это понятия, или относительные? В прежние времена, когда еще не было известно, что Земля шарообразна, и ее представляли себе в виде плоского блина, считалось само собой понятным, что направления "верха" и "низа" во всем мире одни и те же.

Но вот обнаружилось, что Земля шарообразна, и оказалось, что направления вертикали в разных точках земной поверхности различны.

Все это не вызывает у нас теперь никаких сомнений. Между тем история показывает, что понять относительность "верха" и "низа" было не так-то легко. Люди очень склонны приписывать абсолютное значение понятиям, относительность которых неясна из повседневного опыта. Вспомним смехотворное "возражение" против шарообразности Земли, пользовавшееся большим успехом в средние века: на "другой стороне" Земли, мол, деревья должны были бы расти вниз, дождевые капли - падать вверх, а люди ходили бы вниз головой.

И действительно, если считать направление вертикали в Москве абсолютным, то получится, что в Чикаго люди ходят вверх ногами. А с абсолютной точки зрения людей, живущих в Чикаго, москвичи ходят вверх ногами. Но на самом деле вертикальное направление не абсолютно, а относительно. И всюду на Земле, хотя она и шарообразна, люди ходят только вверх головой.

И движение относительно

Представим себе двух путешественниц, едущих в экспрессе Москва - Владивосток. Они уславливаются встречаться ежедневно в одном и том же месте вагона-ресторана и писать своим мужьям письма. Путешественницы уверены, что они выполняют условие, - что они ежедневно являются в то же место, где были вчера. Однако их мужья не согласятся с этим: они будут решительно утверждать, что путешественницы встречались каждый день в новом месте, удаленном от предыдущего на тысячу километров.

Кто же прав: путешественницы или их мужья?

У нас нет оснований отдать предпочтение тем или другим: понятие "одно и то же место" - относительно. Относительно поезда путешественницы действительно встречались все время "там же", а относительно земной поверхности место их встречи постоянно менялось.

Таким образом, положение в пространстве - понятие относительное. Говоря о положении тела, мы всегда подразумеваем его положение относительно других тел. Поэтому, если бы нам предложили указать, где находится такое-то тело, не упоминая в ответе о других телах, мы должны были бы счесть подобное требование совершенно невыполнимым.

Отсюда следует, что относительно также и перемещение, или движение, тел. И когда мы говорим "тело движется", то это значит только, что оно изменяет свое положение относительно каких-то других тел.

Вообразим, что мы наблюдаем из различных пунктов движение тела. Условимся называть такие пункты "лабораториями". Нашими воображаемыми лабораториями может быть все что угодно в мире: дома, города, поезда, самолеты, Земля, другие планеты, Солнце и даже звезды.

Какою же покажется нам траектория, то есть путь движущегося тела?

Все зависит от того, из какой лаборатории мы наблюдаем ее. Допустим, что летчик выбрасывает из самолета груз. С точки зрения летчика груз летит вниз вертикально по прямой, а с точки зрения наблюдателя на земле падающий груз описывает кривую линию - параболу. По какой же траектории груз движется в действительности?

Этот вопрос имеет так же мало смысла, как вопрос о том, какая фотография человека "настоящая", - та, на которой он снят спереди, или та, на которой он снят сзади?

Геометрическая форма кривой, по которой движется тело, имеет такой же относительный характер, как и фотоснимок человека. Фотографируя человека спереди и сзади, мы получим различные снимки, и каждый из них будет совершенно правилен. Точно так же, наблюдая за движением какого-либо тела из различных лабораторий, мы видим различные траектории, и все эти траектории - "настоящие".

Но все ли они будут для нас равноценны? Нельзя ли все-таки найти такой пункт наблюдения, такую лабораторию, откуда мы наилучшим образом могли бы изучать законы, управляющие движением тела?

Мы только что сравнили траектории движущегося тела с фотоснимками человека - и те и другие могут быть самыми разнообразными, - все зависит от того, из какого пункта вы наблюдаете движение тела или делаете снимок. Но вы знаете, что в фотографии не все точки зрения равноценны. Например, если вам нужен снимок для удостоверения, то вы, естественно, пожелаете быть заснятым с лица, а не сзади. Точно так же и в механике, то есть при изучении законов движения тел, мы должны из всех возможных пунктов наблюдения выбрать наиболее подходящий.

В поисках покоя

Мы знаем, что на движение тел оказывают влияние внешние воздействия, которые мы называем силами. Но мы можем себе представить тело, которое свободно от влияния каких бы то ни было сил. Условимся же раз и навсегда считать, что тело, на которое не действуют никакие силы, находится в состоянии покоя. Теперь, введя понятие покоя, мы как будто уже получаем некоторую твердую опору при изучении движения тел. В самом деле, это тело, на которое не действуют никакие силы и которое мы условились считать покоящимся, может нам служить как бы ориентиром, "путеводной звездой" при исследовании движения всех других тел.

Вообразим, что мы убрали какое-нибудь тело так далеко от всех других тел, что на него уже не будут действовать никакие силы. И тогда мы сможем установить, как должны протекать на таком покоящемся теле физические явления. Иначе говоря, мы можем найти законы механики, господствующие в этой воображаемой "покоящейся" лаборатории. А сравнивая их с тем, что мы наблюдаем в других, реальных лабораториях, мы сможем уже судить об истинных свойствах движения во всех случаях.

Итак, казалось бы, все прекрасно устраивается: мы нашли опорный пункт - "покой", хотя и условный, и теперь движение для нас потеряло свою относительность.

Однако на самом деле и этот призрачный с таким трудом достигнутый "покой" не будет абсолютным.

Представьте себе наблюдателей, живущих на одиноком шаре, затерянном в безбрежных просторах вселенной. Они не чувствуют на себе влияния никаких посторонних сил и, следовательно, должны быть убеждены в том, что шар, на котором они живут, находится в полной неподвижности, в абсолютном, неизменном покое.

Вдруг они замечают вдали другой такой же шар, на котором находятся такие же наблюдатели. С огромной скоростью несется этот второй шар, прямолинейно и равномерно, навстречу первому. Наблюдатели на первом шаре не сомневаются в том, что они-то стоят на месте, а движется лишь второй шар. Но обитатели этого второго шара также верят в свою неподвижность и твердо уверены в том, что это первый "чужой" шар движется им навстречу.

Кто же из них прав? Спор по этому поводу не имеет никакого смысла, так как состояние прямолинейного и равномерного движения совершенно невозможно отличить от состояния покоя.

Чтобы убедиться в этом, нам с вами не надо даже забираться в бесконечные глубины вселенной. Сядьте в речной пароход, стоящий у пристани, запритесь в каюте и хорошенько занавесьте окна. При таких условиях вы никогда не обнаружите, стоите ли вы на месте или двигаетесь прямолинейно и равномерно. Все тела в каюте будут вести себя в обоих случаях совершенно одинаково: поверхность воды в стакане останется все время спокойной; мяч, подброшенный вертикально вверх, упадет так же вертикально вниз; маятник часов будет качаться так же, как на стене вашей квартиры.

Ваш пароход может идти с любой скоростью, но на нем будут господствовать такие же точно законы движения, как и на совершенно неподвижном пароходе. Только в момент замедления хода или при ускорении его вы можете обнаружить его движение; когда же он идет прямолинейно и равномерно, все протекает на нем так же, как и на неподвижном судне.

Таким образом, мы не нашли нигде абсолютного покоя, а обнаружили, что в мире может существовать бесконечно много "покоев", движущихся друг относительно друга равномерно и прямолинейно. Поэтому, когда мы говорим о движении какого-либо тела, то всегда надо указать, относительно какого именно "покоя" оно движется. Это положение называется в механике "законом относительности движения". Оно было выдвинуто еще триста лет тому назад Галилеем.

Но если движение и покой относительны, то и скорость, очевидно, должна быть относительной. Так оно и есть на самом деле. Допустим, например, что вы бежите по палубе парохода со скоростью 5 метров в секунду. Если пароход проходит в том же направлении 10 метров в секунду, то относительно берега ваша скорость будет равна уже 15 метрам в секунду.

Поэтому утверждение: "тело движется с такой-то скоростью", без указания, относительно чего скорость измерена, не имеет смысла. Определяя скорость движущегося тела из разных пунктов, мы должны получать разные результаты.

Все то, о чем мы до сих пор говорили, было известно задолго до работ Эйнштейна. Относительность движения, покоя и скорости была установлена еще великими творцами механики - Галилеем и Ньютоном. Открытые им законы движения легли в основу физики и в течение почти трех столетий много способствовали развитию всех естественных наук. Бесчисленные новые факты и законы открывались исследователями, и все они еще и еще раз подтверждали правильность воззрений Галилея и Ньютона. Подтверждались эти воззрения и в практической механике - при конструировании и эксплуатации всякого рода машин и аппаратов.

Так продолжалось до конца XIX века, когда были обнаружены новые явления, которые оказались в решительном противоречии с законами классической механики.

В 1881 году американский физик Майклсон предпринял серию опытов по измерению скорости света. Неожиданный результат этих опытов внес смятение в ряды физиков; он был настолько поразителен и загадочен, что поставил в тупик величайших ученых мира.

Замечательные свойства света

Быть может, вам приходилось наблюдать такое интересное явление.

Где-то вдали, в поле, на полотне железной дороги или на площадке строительства, бьет молот. Вы видите, как тяжело он падает на наковальню или на стальной рельс. Однако звука от удара совершенно не слышно. Кажется, что молот опустился на что-то очень мягкое. Но вот он снова поднимается. И в момент, когда он уже находится довольно высоко в воздухе, вы слышите отдаленный резкий стук.

Нетрудно понять, почему это происходит. При обычных условиях звук распространяется в воздухе со скоростью около 340 метров в секунду, поэтому удар молота мы слышим не в тот момент, когда он происходит, а лишь после того, как звук от него успевает дойти до нашего уха.

Вот другой, более разительный пример. Молния и гром происходят одновременно, но часто кажется, что молнии сверкают бесшумно, так как раскаты грома достигают нашего уха только через несколько секунд. Если мы слышим их с опозданием, например, в 10 секунд, то это значит, что молния удалена от нас на 340 х 10 = 3400 метров, или 3,4 километра.

В обоих случаях мы говорим о двух моментах: о том, когда какое-то событие произошло на самом деле, и о моменте, в который отзвук этого события достиг нашего уха. Но откуда мы знаем, когда именно событие произошло на самом деле?

Мы видим это: мы видим, как опускается молот, как сверкает молния. При этом мы предполагаем, что событие действительно происходит в тот самый момент, когда мы видим его. Но так ли это на самом деле?

Нет, не так. Ведь мы не воспринимаем события непосредственно. В явлениях, которые мы наблюдаем с помощью зрения, участвует свет. А свет распространяется в пространстве не мгновенно: как и у звука, у лучей света уходит время на преодоление расстояния.

В пустоте свет распространяется со скоростью около 300 тысяч километров в секунду. Это значит: если на расстоянии в 300 тысяч километров от вас вспыхнул свет, вы можете заметить его вспышку не сразу, а лишь секунду спустя.

В одну секунду лучи света успели бы семь раз обогнуть земной шар по экватору. По сравнению с такой колоссальной скоростью земные расстояния кажутся незначительными, поэтому практически можно считать, что все происходящие на Земле явления мы видим в тот же момент, когда они происходят.

Невообразимо огромная скорость света может показаться удивительной. Гораздо удивительнее, однако, другое: то, что скорость света отличается поразительным постоянством. Посмотрим, в чем это постоянство заключается.

Известно, что движение тел можно искусственно замедлять и ускорять. Если, например, поставить на пути полета пули ящик с песком, то в ящике пуля потеряет часть своей скорости. Потерянная скорость не восстановится: выйдя из ящика, пуля полетит дальше уже не с прежней, а с уменьшенной скоростью.

Иначе ведут себя лучи света. В воздухе они распространяются медленнее, чем в пустоте, в воде - медленнее, чем в воздухе, а в стекле - еще медленнее. Однако, выйдя из любого вещества (конечно, прозрачного) в пустоту, свет продолжает распространяться со своей прежней скоростью - 300 тысяч километров в секунду. При этом скорость света не зависит от свойств его источника: она совершенно одинакова у лучей и Солнца, и прожектора, и свечи. Кроме того, безразлично, движется ли сам источник света, или нет - на скорости света это никак не отражается.

Чтобы полностью уяснить себе смысл этого факта, сравним еще раз распространение света с движением обычных тел. Вообразите, что вы пускаете на улице из брандспойта струю воды со скоростью 5 метров в секунду. Это значит, что каждая частица воды проходит относительно улицы 5 метров в секунду. Но если поместить брандспойт на автомобиль, проходящий в направлении струи 10 метров в секунду, то скорость струи относительно улицы будет равна уже 15 метрам в секунду: частицам воды сообщается скорость не только брандспойтом, но и движущимся автомобилем, который увлекает брандспойт вместе со струей вперед.

Сравнивая источник света с брандспойтом, а его лучи - со струей воды, мы увидим существенное различие. Для лучей света безразлично, из какого источника они попали в пустоту и что происходило с ними до того, как они вошли в пустое пространство. Раз они находятся в нем, скорость их распространения равна одной и той же величине - 300 тысячам километров в секунду, и независимо от того, движется ли источник света, или нет.

Посмотрим, как эти особенные свойства света согласуются с законом относительности движения, о котором шла речь в первой части статьи. Для этого попробуем решить задачу на сложение и вычитание скоростей, причем для простоты примем, что все воображаемые нами явления происходят в пустоте, где скорость света равна 300 тысячам километров.

Пусть на движущемся пароходе, в самой середине его, помещается источник света, а на каждом из концов парохода - по наблюдателю. Оба они измеряют скорость распространения света. Каковы будут результаты их работы?

Так как лучи распространяются во все стороны, а оба наблюдателя движутся вместе с пароходом в одну сторону, то получится такая картина: наблюдатель, находящийся на заднем конце парохода, движется навстречу лучам, а передний все время удаляется от них.

Поэтому первый наблюдатель должен найти, что скорость света равна 300 тысячам километров плюс скорость парохода, а второй - 300 тысячам километров минус скорость парохода. И если мы вообразим на минуту, что пароход проходит в секунду чудовищное расстояние в 200 тысяч километров, то скорость света, найденная первым наблюдателем, будет 500 тысяч километров, а вторым - 100 тысяч километров в секунду. На неподвижном же пароходе оба наблюдателя получили бы один и тот же результат - 300 тысяч километров в секунду.

Таким образом, с точки зрения наблюдателей, на нашем движущемся пароходе свет как будто распространяется в одну сторону в 1 2/3 раза быстрее, а в другую - втрое медленнее, чем на покоящемся. Произведя несложные арифметические действия, они смогут установить абсолютную скорость парохода.

Точно так же мы можем установить абсолютную скорость всякого другого движущегося тела: для этого достаточно поместить на него какой-либо источник света и измерить из разных точек тела скорость распространения световых лучей.

Иначе говоря, мы неожиданно оказались в состоянии определить скорость, а следовательно, и движение тела безотносительно от всех других тел. Но если есть абсолютная скорость, то существует и единый, абсолютный покой, а именно: всякая лаборатория, в которой наблюдатели, измеряя скорость света в любых направлениях, получают одну и ту же величину - 300 тысяч километров в секунду, и будет абсолютно покоящейся.

Нетрудно видеть, что все это решительно противоречит тем выводам, к которым мы пришли в предыдущем номере журнала. В самом деле: мы говорили о том, что на теле, движущемся прямолинейно равномерно, все протекает так, как на неподвижном. Поэтому, будем ли мы, например, стрелять на пароходе по направлению его движения или против движения, скорость пули относительно парохода останется одной и той же и будет равна скорости на неподвижном пароходе. Вместе с тем мы убедились, что движение, скорость и покой - понятия относительные: абсолютных движения, скорости и покоя не существует. А теперь вдруг оказывается, что наблюдения над свойствами света опрокидывают все эти выводы и противоречат открытому Галилеем закону природы - закону относительности движения.

А ведь это один из ее основных законов: он господствует во всем мире; справедливость его подтверждалась на опыте несметное число раз, подтверждается повсеместно и ежеминутно до сих пор; если бы он перестал внезапно быть справедливым, невообразимая сумятица охватила бы вселенную. А вот свет не только не подчиняется ему, но даже опровергает его!

Опыт Майклсона

Что делать с этим противоречием? Прежде чем высказывать те или иные соображения по этому поводу, обратим внимание на следующее обстоятельство: то, что свойства света противоречат закону относительности движения, мы установили исключительно путем рассуждений. Правда, это были весьма убедительные рассуждения. Но, ограничиваясь одними рассуждениями, мы уподобились бы древним философам, которые пытались открыть законы природы не с помощью опыта и наблюдения, а только исходя из одних умозаключений. При этом неизбежно возникает опасность, что созданная таким образом картина мира при всех своих достоинствах окажется весьма мало похожей на действительный мир, окружающий нас.

Верховным судьей всякой физической теории всегда является опыт, а поэтому, не ограничиваясь рассуждениями о том, как должен распространяться свет на движущемся теле, следует обратиться к опытам, которые покажут, как он в этих условиях распространяется на самом деле.

Следует, однако, иметь в виду, что постановка таких опытов затруднительна по очень простой причине: невозможно найти на практике такое тело, которое двигалось бы со скоростью, соизмеримой с колоссальной скоростью света. Ведь такого парохода, каким мы пользовались в нашем рассуждении, конечно, не существует и не может существовать.

Чтобы суметь определить незначительное изменение скорости света на доступных нам, сравнительно медленно движущихся телах, надо было создать измерительные приборы исключительно высокой точности. И только тогда, когда такие приборы удалось изготовить, можно было приступить к выяснению противоречия между свойствами света и законом относительности движения.

Такой опыт был предпринят в 1881 году одним из величайших экспериментаторов новейшего времени, американским физиком Майклсоном.

В качестве движущегося тела Майклсон использовал... земной шар. Действительно, Земля - тело заведомо движущееся: она обращается вокруг Солнца и притом с довольно "солидной" для наших условий скоростью - 30 километров в секунду. Поэтому, изучая распространение света на Земле, мы фактически изучаем распространение света в движущейся лаборатории.

Майклсон с весьма высокой точностью измерил скорость света на Земле в различных направлениях, то есть он практически осуществил то, что мы мысленно проделали с вами на воображаемом движущемся пароходе. Чтобы уловить ничтожную разницу в 30 километров по сравнению с огромным числом в 300 тысяч километров, Майклсону пришлось применить очень сложную экспериментальную технику и проявить всю свою огромную изобретательность. Точность опыта была так велика, что Майклсон имел бы возможность обнаружить и гораздо меньшую разницу в скоростях, чем ту, которую он хотел обнаружить.

Из огня да в полымя

Результат опыта был как будто заранее очевиден. Зная свойства света, можно было предвидеть, что скорость света, измеренная в различных направлениях, окажется различной. Но, быть может, вы думаете, что результат опыта в действительности оказался таким?

Ничего подобного! Эксперимент Майклсона дал совершенно неожиданные результаты. В течение ряда лет его много раз повторяли в самых различных условиях, но он неизменно приводил к одному и тому же поразительному выводу.

На заведомо движущейся Земле скорость света, измеренная в любых направлениях, оказывается совершенно одинаковой.

Значит, свет не представляет никакого исключения. Он подчиняется тому же закону, что пуля на движущемся пароходе, - закону относительности Галилея. Обнаружить "абсолютное" движение Земли так и не удалось. Его не существует, как это и должно быть согласно закону относительности.

Неприятное противоречие, с которым наука столкнулась, было разрешено. Но зато возникли новые противоречия! Физики попали из огня да в полымя.

Чтобы уяснить себе новые противоречия, к которым привел опыт Майклсона, просмотрим наши исследования по порядку.

Сначала мы установили, что абсолютного движения и покоя не существует; об этом говорит закон относительности Галилея. Затем выяснилось, что особые свойства света противоречат закону относительности. Отсюда вытекало, что абсолютное движение и покой все же существуют. Чтобы проверить это, Майклсон произвел эксперимент. Эксперимент показал обратное: никакого противоречия нет - и свет подчиняется закону относительности. Следовательно, абсолютного движения и покоя опять не существует. С другой стороны, выводы из опыта Майклсона, очевидно, применимы для любого движущегося тела, а не только для Земли; стало быть, скорость света одинакова во всех лабораториях, независимо от их собственного движения, и, значит, скорость света - величина все-таки не относительная, а абсолютная.

Получился заколдованный круг. Величайшие физики всего мира годы ломали себе над ним голову. Предлагались различные теории, вплоть до самых невероятных и фантастических. Но ничего не помогало: каждое новое предположение сразу же вызывало новые противоречия. Ученый мир стоял перед одной из величайших загадок.

Самое загадочное и странное во всем этом было то, что наука здесь имела дело с совершенно ясными, твердо установленными фактами: с законом относительности, известными свойствами света и опытом Майклсона. А приводили они, казалось бы, к совершенной нелепости.

Противоречие истин... Но истины не могут противоречить друг другу, так как истина может быть только одна. Следовательно, в нашем понимании фактов должна быть ошибка. Но где? В чем она заключается?

В течение целых 24 лет - с 1881 г. до 1905 г. - не находили ответа на эти вопросы. Но в 1905 году величайший физик современности Альберт Эйнштейн дал загадке гениальное объяснение. Явившееся с совершенно неожиданной стороны, оно произвело на физиков впечатление разорвавшейся бомбы.

Объяснение Эйнштейна настолько не похоже на все понятия, к которым человечество привыкло в течение тысячелетий, что оно звучит исключительно невероятно. Однако, несмотря на это, оно оказалось несомненно правильным: вот уже 34 года, как лабораторные опыты и наблюдения над различными физическими явлениями в мире все более и более подтверждают его справедливость.

Когда открываются двери

Чтобы понять объяснение Эйнштейна, необходимо познакомиться сначала с одним следствием из опыта Майклсона. Рассмотрим его сразу же на примере. Воспользуемся для этого еще раз фантастическим пароходом.

Вообразим пароход длиной в 5400 тысяч километров. Пусть он движется прямолинейно и равномерно с баснословной скоростью в 240 тысяч километров в секунду. В какой-то момент в середине парохода зажигается лампочка. На носу и на корме парохода имеются двери. Устроены они так, что в момент, когда на них падает свет от лампочки, они автоматически открываются. Вот лампочка зажглась. Когда же именно откроются двери?

Чтобы ответить на этот вопрос, вспомним результаты опыта Майклсона. Опыт Майклсона показал, что относительно наблюдателей на движущейся Земле свет распространяется по всем направлениям с одинаковой скоростью в 300 тысяч километров в секунду. То же самое, естественно, произойдет и на движущемся пароходе. Но расстояние от лампочки до каждого из концов парохода равно 2700.000 километров, а 2700.000 : 300.000 = 9. Значит, до каждой двери свет от лампочки дойдет через 9 секунд. Таким образом, обе двери откроются одновременно.

Так представится дело наблюдателю на пароходе. А что увидят люди на пристани, мимо которой движется пароход?

Так как скорость света не зависит от движения источника света, то и относительно пристани она равна тем же 300 тысячам километров в секунду, несмотря на то что источник света находится на движущемся пароходе. Но, с точки зрения наблюдателя на пристани, дверь на корме парохода движется навстречу лучу света со скоростью парохода. Когда же дверь встретится с лучом?

Мы имеем здесь дело с задачей, подобной задаче о двух путешественниках, едущих навстречу друг другу. Чтобы найти время встречи, надо расстояние между путешественниками разделить на сумму их скоростей. Поступим и здесь таким же образом. Расстояние между лампочкой и дверью составляет 2700 тысяч километров, скорость двери (то есть парохода) равна 240 тысяч километров в секунду, а скорость света - 300 тысяч километров в секунду.

Следовательно, задняя дверь откроется через

2700.000/300000 + 240000=5 секунд

после того, как лампочка зажглась. А передняя?

Переднюю дверь, с точки зрения наблюдателя на пристани, лучу света приходится догонять, так как она движется с пароходом в ту же сторону, что и луч света. Поэтому здесь мы имеем задачу о путешественниках, из которых один догоняет другого. Расстояние будем делить уже на разность скоростей:

2700.000/300000 - 240000=45 секунд

Итак, первая дверь откроется через 5 секунд после того, как зажглась лампочка, а вторая - через 45 секунд. Следовательно двери откроются не одновременно. Вот какой представится картина людям на пристани! Картина - самая удивительная из всего того, о чем до сих пор говорилось.

Выходит, что одни и те же события - открытие передней и задней дверей - окажутся для людей на пароходе одновременными, а для людей на пристани - неодновременными, а разделенными промежутком времени в 40секунд.

Не звучит ли это совершеннейшей бессмыслицей? Не похоже ли это на абсурдное утверждение из анекдота - что длина крокодила от хвоста до головы 2 метра, а от головы до хвоста 1 метр?

И, заметьте, людям на пристани не покажется, что двери открылись не одновременно: для них это на самом деле произойдет одновременно. Ведь мы вычислили время, когда открылась каждая из дверей. При этом мы нашли, что вторая дверь действительно открылась на 40 секунд позже первой.

Однако пассажиры парохода так же правильно установили, что обе двери открылись одновременно. И это было показано арифметически. Что же получается? Арифметика против арифметики?!

Нет, арифметика здесь не виновата. Все противоречия, с которыми мы здесь столкнулись, лежат в наших неправильных представлениях о времени: время оказалось вовсе не таким, каким человечество считало его до сих пор.

Эйнштейн пересмотрел эти старые, тысячелетние понятия. При этом он сделал великое открытие, благодаря которому его имя стало бессмертным.

Время относительно

В предыдущем номере мы показали, какие необыкновенные выводы должны были сделать физики из опыта Майклсона. Мы рассмотрели пример с воображаемым пароходом, на котором по световому сигналу открываются две двери, и установили поразительный факт: с точки зрения наблюдателей на пароходе двери открываются в один и тот же момент, а с точки зрения наблюдателей на пристани - в разные моменты.

То, к чему человек не привык, кажется ему невероятным. Случай с дверями на пароходе кажется совершенно невероятным потому, что мы никогда не двигались со скоростью, даже отдаленно приближающейся к баснословному числу в 240 тысяч километров в секунду. Но надо учесть, что явления, происходящие при таких скоростях, могут сильно отличаться от тех, к которым мы привыкли в повседневной жизни.

Разумеется, на самом деле пароходов, передвигающихся со скоростями, близкими к скорости света, не существует. И в действительности никто никогда не наблюдал такого случая с дверями, какой описан в нашем примере. Но сходные явления, благодаря современной высокоразвитой экспериментальной технике, безусловно обнаружить можно. Напомним, что пример с открывающимися дверями построен не на отвлеченных рассуждениях, а исключительно на твердо установленных фактах, полученных путем опыта: опыта Майклсона и многолетних наблюдений над свойствами света.

Итак, именно опыт привел нас к бесспорному выводу, что понятие одновременности двух событий не абсолютно. Прежде мы считали, что если два события произошли в какой-либо лаборатории одновременно, то и для всякой другой лаборатории они будут одновременными. Теперь же мы выяснили, что это справедливо только для лабораторий, покоящихся относительно друг друга. В противном случае события, одновременные для одной лаборатории, произойдут для другой в разное время.

Отсюда вытекает, что понятие одновременности - понятие относительное. Оно приобретает смысл лишь при указании, как движется лаборатория, из которой события наблюдаются.

В начале статьи мы говорили о двух путешественницах, ежедневно являвшихся в вагон-ресторан экспресса. Путешественницы были уверены, что они встречаются все время в одном и том же месте. Мужья же их утверждали, что они встречались каждый день в новом месте, удаленном от предыдущего на тысячу километров.

И те и другие были правы: относительно поезда путешественницы встречались действительно в одном и том же месте, относительно же полотна железной дороги - в разных местах. Этот пример показал нам, что понятие пространства - понятие не абсолютное, а относительное.

Оба примера - о встрече путешественниц и открывании дверей на пароходе - подобны друг другу. В обоих случаях речь идет об относительности, и встречаются даже одинаковые слова: "в один и тот же" и "в разные". Только в первом примере говорится о местах, то есть о пространстве, а во втором - о моментах, то есть о времени. Что же отсюда вытекает?

То, что понятие времени так же относительно, как и понятие пространства.

Чтобы окончательно убедиться в этом, видоизменим несколько пример с пароходом. Предположим, что механизм одной из дверей в неисправности. Пусть из-за этой неисправности люди на пароходе заметят, что передняя дверь открылась на 15 секунд раньше задней. А что увидят люди на пристани?

Если в первом варианте примера передняя дверь открылась для них на 40 секунд позже задней, то во втором варианте это произойдет лишь на 40 - 15 = 25 секунд позже. Получается, таким образом, что для людей на пароходе передняя дверь открылась раньше задней, а для людей на пристани - позже.

Итак, то, что для одной лаборатории было раньше, относительно другой произошло позже. Отсюда ясно, что понятие самого времени - понятие относительное.

Это открытие было сделано в 1905 году двадцатишестилетним физиком Альбертом Эйнштейном. До того человек представлял себе время абсолютным - всюду в мире одинаковым, независимым ни от какой лаборатории. Так некогда люди считали одинаковым во всем мире направления верха и низа.

И вот время постигла судьба пространства. Оказалось, что выражение "в одно и то же время" имеет не больше смысла, чем выражение "в одном и том же месте", если не указано, к какой лаборатории они относятся.

Быть может, у кого-нибудь все же возникает вопрос: ну, а на самом деле, независимо от какой бы то ни было лаборатории, одновременны какие-нибудь два события или нет? Задумываться над этим вопросом так же нелепо, как над вопросом, а где на самом деле, независимо ни от каких лабораторий, находятся в мире верх и низ?

Открытие относительности времени позволило, как вы увидите из дальнейшего, разрешить все противоречия, к которым привел физику опыт Майклсона. Это открытие было одной из величайших побед разума над сложившимися в течение тысячелетий закоснелыми представлениями. Поразив своей необычайностью здесь ученый мир, оно произвело глубочайший переворот во взглядах человечества на природу. По характеру и значению его можно сравнить только с переворотом, вызванным открытием шарообразности Земли или открытием ее движения вокруг Солнца.

Так Эйнштейн, наряду с Коперником и Ньютоном, проложил совершенно новые пути для науки. И недаром открытие этого, еще молодого тогда, ученого быстро стяжало ему славу величайшего физика нашего столетия.

Учение об относительности времени называют обычно "принципом относительности Эйнштейна" или просто "принципом относительности". Его не следует смешивать с законом, или принципом, относительности движения, о котором речь шла раньше, то есть с "классическим принципом относительности", или "принципом относительности Галилея - Ньютона".

Продолжение статьи http://intergame.ucoz.com/publ/lev_landau_teorija_otnositelnosti_alberta_ehjnshtejna_prodolzhenie/1-1-0-126



Источник: http://www.znanie-sila.su/?issue=projects/issue_39.html&r=1
Категория: Мои статьи | Добавил: нордвик (21.10.2012)
Просмотров: 636 | Теги: физика, наука | Рейтинг: 0.0/0
Всего комментариев: 0
Форма входа


ЛУЧШИЕ ОНЛАЙН КАЗИНО
Казино Play Fortuna
Казино Вулкан
Казино Joy
Казино Argo
Казино X
Казино ЛотоРу
Казино Frank
Игровой клуб Вулкан
Казино Вулкан Stars
Казино Drift
Казино Вулкан Ставка
Казино Малина
Казино AzartPlay
Казино YoYo
Казино Ва-Банк
Казино Марафон
Казино Фараон
Казино GMSlots
Казино Буран
Казино ZigZag777




Казино, игры, лото Яндекс.Метрика
 
Copyright MyCorp © 2017 Бесплатный конструктор сайтов - uCoz